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•  ŝ��Ū�TÚƆĒĊ/American	Recovery	and	
Reinvestment	Act	(ARRA)	2009	
– ŔĘ�%»KÂIÌÙ”ĒĊ�Health	InformaAon	
Technology	for	Economic	and	Clinical	Health	Act	(HITECH)	

•  ÍşHÛ�·<jĭĒĊ	
	PaAent	ProtecAon	and	Affordable	Care	Act	of	2010	

•  �¦HITlž�bQ¥	
Office	of	the	NaAonal	Coordinator		for	Health	IT(ONC�	

•  ŝ�jĭHKĻŁ�ƃƝ¯	
Agency	for	Healthcare	Research	and	Quality	(AHRQ)	

•  ŠƘjĭHƧ�ŠƘjĭƍfŵYýd$É	
Centers	for	Medicare	and	Medicaid	Services	(CMS)	
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Centers for Medicare and Medicaid 
Services (CMS)
•  üë\Īī�įoĒĊ���“Meaningful	Use”	incenAve	

program	by	CMS	�UAlizing	EHRs	to	improve	health	
outcomes�three	Stages	
–  Stage	1	–	data	capture	and	sharing	
–  Stage	2	–	advanced	clinical	processes	
–  Stage	3	-	improved	outcome 		

•  �Ijĭ<JıÜơċÅ��	Value-based	program	by	
CMS	
–  Transfer	from	Fee-For-Service	payment	models	(quanAty)	to	
Value-Based	Reimbursement	models	(quality)	

–  BeZer	care	for	individuals	and	populaAons,	with	lower	cost	
–  Example2Readmission	rates	�TČ@ƥĥ�	
–  	30%	percent	of	VBR	by	2016;	50%	percent	of	VBR	by	2018	
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Healthdata.gov

• 
		

•  P�@ƥį1íã¼��NaAonal	InpaAent	
Sample	(NIS)	
– Øüŝ�@ƥį1ÝĈ�	
– 70061Č�¸�	
– �I20¸íã�	
– ŬuŲĐ2	15XƠŜŖżŀ	+	DUA	
– ƅĪ2�$50-350/year	
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工业界 －分析服务是行业发展趋势
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分析及电子病历的二次应用	
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•  IBM	
•  Optum	
•  Oracle	
•  Verisk	AnalyAcs	
•  MEDai’s	Health	
•  MedeAnalyAcs	
•  McKesson	
•  Truven	Health	AnalyAcs		
•  Allscripts	Healthcare	SoluAons	
•  Cerner	
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•  �Ŵċ�"hjĭíãƩ	
–  OPTUM	(38006į1,	52005¸Ã�)	
–  Humedica	(25006į1�2008-2013)	
–  Cerner	Health	Facts�50006į1�52000¸Ã��	
–  Truven	MarketScan	Commercial	Claims	and	Encounters	
(CCAE)�1217006į1,	52000¸Ã��	

•  qƦìÐIÌ�ĉãƨľHÛĒĊHIPAA		(Health	
Insurance	Portability	and	Accountability	Act)	
–  18	PHI2�������´�i�ƙŚŅ�Øüķŏ:
9��óÿ�īŻ�>ĸ�ī�ƙŊ��Ľ=¢P|�į
o|�jĭHƧ|�Ɓ|�Ÿ(|�ƋĠ|�;�Ś|�
Ŝ����	���ĩġŹ]�áő��Ư��ŤƚĝĞ��
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•  ī�įo���Œ ĻŁ��eMERGE	–	electronic	medical	
records	and	genomics	
–  2007Ã�ŦP�¸	
–  �I 2ŝMıÚO	

•  ŋVjĭŵY�	Precision	Medicine	IniAaAve	
–  �016¸Ã�	
–  �-62ŝMÚO	

•  Pŝ%»íãŜŖ�PCORNet	
–  2013¸Ã�	
–  �I22ŝMÚO	
–  ƉƐ121wı%»íã	

•  OHDSI	–	The	ObservaAonal	Health	Data	Sciences	and	InformaAcs		
•  >20	�¦	
•  >6.621wíã	
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Automated Identification of Postoperative
Complications Within an Electronic Medical
Record Using Natural Language Processing
Harvey J. Murff, MD, MPH
Fern FitzHenry, RN, PhD
Michael E. Matheny, MD, MSc, MPH
Nancy Gentry, RN
Kristen L. Kotter, MS
Kimberly Crimin, PhD
Robert S. Dittus, MD, MPH
Amy K. Rosen, PhD
Peter L. Elkin, MD
Steven H. Brown, MD, MSc
Theodore Speroff, PhD

IMPROVING PATIENT SAFETY RE-
mains an important priority. One
method for identifying safety con-
cerns is through screening admin-

istrative data for specific International
Classification of Disease, Ninth Revi-
sion, Clinical Modification (ICD-9-
CM) codes that might be suggestive of
a medical injury.1,2 To expand on this
method, the Agency for Healthcare Re-
search and Quality developed a set of
20 measures, known as the patient
safety indicators, which use adminis-
trative data to screen for potential ad-
verse events that occur during hospi-
talization.3 Several private organizations
and the Centers for Medicare & Med-
icaid Services use the patient safety in-
dicator method to provide ratings on
individual health care institutions.4-6

Administrative data have several in-
trinsic strengths as a health care qual-

For editorial comment see p 880.

Author Affiliations: Tennessee Valley Healthcare Sys-
tem, Veterans Affairs Medical Center, Nashville (Drs
Murff, FitzHenry, Matheny, Dittus, Brown, and Sper-
off and Ms Gentry); Division of General Internal Medi-
cine and Public Health (Drs Murff, Matheny, Dittus,
and Speroff ) and Departments of Biomedical Infor-
matics (Drs FitzHenry, Matheny, and Brown) and Bio-
statistics (Ms Kotter and Drs Crimin and Speroff ), Van-
derbilt University, Nashville; Center for Organization,
Leadership and Management Research, VA Boston

Healthcare System, and Department of Health Policy
and Management, Boston University School of Pub-
lic Health, Boston, Massachusetts (Dr Rosen); and
Mount Sinai School of Medicine, New York City, New
York (Dr Elkin).
Corresponding Author: Harvey J. Murff, MD, MPH,
Institute for Medicine and Public Health, Vanderbilt
Epidemiology Center, 2525 West End Ave, Ste 600,
Sixth Floor, Nashville, TN 37203 (harvey.j.murff
@vanderbilt.edu).

Context Currently most automated methods to identify patient safety occurrences
rely on administrative data codes; however, free-text searches of electronic medical
records could represent an additional surveillance approach.

Objective To evaluate a natural language processing search–approach to identify
postoperative surgical complications within a comprehensive electronic medical rec-
ord.

Design, Setting, and Patients Cross-sectional study involving 2974 patients un-
dergoing inpatient surgical procedures at 6 Veterans Health Administration (VHA) medi-
cal centers from 1999 to 2006.

Main Outcome Measures Postoperative occurrences of acute renal failure requir-
ing dialysis, deep vein thrombosis, pulmonary embolism, sepsis, pneumonia, or myo-
cardial infarction identified through medical record review as part of the VA Surgical
Quality Improvement Program. We determined the sensitivity and specificity of the
natural language processing approach to identify these complications and compared
its performance with patient safety indicators that use discharge coding information.

Results The proportion of postoperative events for each sample was 2% (39 of 1924)
for acute renal failure requiring dialysis, 0.7% (18 of 2327) for pulmonary embolism,
1% (29 of 2327) for deep vein thrombosis, 7% (61 of 866) for sepsis, 16% (222 of
1405) for pneumonia, and 2% (35 of 1822) for myocardial infarction. Natural lan-
guage processing correctly identified 82% (95% confidence interval [CI], 67%-91%)
of acute renal failure cases compared with 38% (95% CI, 25%-54%) for patient safety
indicators. Similar results were obtained for venous thromboembolism (59%, 95% CI,
44%-72% vs 46%, 95% CI, 32%-60%), pneumonia (64%, 95% CI, 58%-70% vs
5%, 95% CI, 3%-9%), sepsis (89%, 95% CI, 78%-94% vs 34%, 95% CI, 24%-
47%), and postoperative myocardial infarction (91%, 95% CI, 78%-97%) vs 89%,
95% CI, 74%-96%). Both natural language processing and patient safety indicators
were highly specific for these diagnoses.

Conclusion Among patients undergoing inpatient surgical procedures at VA medi-
cal centers, natural language processing analysis of electronic medical records to iden-
tify postoperative complications had higher sensitivity and lower specificity compared
with patient safety indicators based on discharge coding.
JAMA. 2011;306(8):848-855 www.jama.com

848 JAMA, August 24/31, 2011—Vol 306, No. 8 ©2011 American Medical Association. All rights reserved.
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Information technology has transformed the way health 
care is carried out and documented. Presently, the practice 
of health care generates, exchanges and stores huge 
amounts of patient-specific information. In addition to the 
traditional clinical narrative, databases in modern health 
centres automatically capture structured data relating 
to all aspects of care, including diagnosis, medication, 
laboratory test results and radiological imaging data.

This transformation holds great promise for the 
individual patient as richer information, coupled 
with clinical decision support (CDS) systems, becomes 
readily available at the bedside to support informed 
decision making and to improve patient safety1,2. 
From a research perspective, integrated patient data 
constitute a computable collection of fine-grained 
longitudinal phenotypic profiles, facilitating cohort-
wide investigations and knowledge discovery on an 
unprecedented scale3. Biomedical research increasingly 
uses methods from data mining, machine learning 
and text mining to investigate, for example, disease 
comorbidities, patient stratification, drug interactions 
and clinical outcome.

The ability to derive fine-grained patient phenotypes 
from health record data complements the increasingly 
detailed characterization of genetic variation and thus 
allows fine mapping of genotype–phenotype correlations. 
Detailed phenotyping is also expected to advance and 
partly automate the process of recruiting patients for 
clinical trials and case–control studies. The prospect of 
patient record data driving genomic research becomes 

especially interesting when traditional health-care-sector 
data is linked with biobanks and genetic data4.

Despite the great potential, researchers who wish to 
analyse large amounts of patient data are still faced with 
technical challenges of integrating scattered, heterogene-
ous data, in addition to ethical and legal obstacles that 
limit access to the data5,6. It is hoped that large-scale 
adoption of health information technology (HIT) infra-
structure in the form of electronic health records (EHRs) 
and agreed standards for interoperability and schemes 
for privacy and consent, will improve this situation 
(TABLE 1). With incentives for improved public health 
and the expected health budget savings7,8, these matters 
are receiving much political attention worldwide. This 
is all part of a growing realization that secondary usage 
of patient data for population-wide research is key to 
bridging the translational gap between bench and bed-
side and moving closer to a realization of personalized 
and stratified medicine9.

In this Review we first introduce the typical content 
of a generic EHR system. We then focus on how data-
driven knowledge discovery on cohort-wide health 
data can fill knowledge gaps and assist informed 
clinical decision making. Next we describe how the 
integration of EHR and genetic data, together with 
systems biology approaches, can facilitate genotype–
phenotype association studies. Finally we discuss some 
of the structural and political challenges that are facing 
EHR adoption and we comment on the perspectives and 
visions for the future.

1NNF Center for Protein 
Research, Faculty of Health 
Sciences, University of 
Copenhagen, Copenhagen, 
Denmark.
2Center for Biological 
Sequence Analysis, 
Department of Systems 
Biology, Technical University 
of Denmark, Lyngby, 
Denmark.
Correspondence to S.B.  
e-mail: brunak@cbs.dtu.dk
doi:10.1038/nrg3208
Published online 2 May 2012

Clinical decision support
(CDS). Software systems 
providing support for decision 
making to physicians through 
the application of health 
knowledge and logical rules to 
patient data.

Biobanks
Central repositories of 
biological material that are 
mainly used for research. They 
facilitate the re-use of collected 
samples in different research 
projects.

Mining electronic health records: 
towards better research applications 
and clinical care
Peter B. Jensen1, Lars J. Jensen1 and Søren Brunak1,2

Abstract | Clinical data describing the phenotypes and treatment of patients represents an 
underused data source that has much greater research potential than is currently realized. 
Mining of electronic health records (EHRs) has the potential for establishing new patient-
stratification principles and for revealing unknown disease correlations. Integrating EHR 
data with genetic data will also give a finer understanding of genotype–phenotype 
relationships. However, a broad range of ethical, legal and technical reasons currently 
hinder the systematic deposition of these data in EHRs and their mining. Here, we consider 
the potential for furthering medical research and clinical care using EHR data and the 
challenges that must be overcome before this is a reality.
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Azithromycin and the Risk  
of Cardiovascular Death

Wayne A. Ray, Ph.D., Katherine T. Murray, M.D., Kathi Hall, B.S.,  
Patrick G. Arbogast, Ph.D., and C. Michael Stein, M.B., Ch.B.

From the Division of Pharmacoepidemi-
ology, Department of Preventive Medi-
cine (W.A.R., K.H.), the Departments of 
Medicine and Pharmacology, Divisions 
of Cardiology (K.T.M.), Rheumatology 
(C.M.S.), and Clinical Pharmacology 
(K.T.M., C.M.S.), and the Department of 
Biostatistics (P.G.A.), Vanderbilt Univer-
sity School of Medicine; and the Geriatric 
Research Education and Clinical Center, 
Nashville Veterans Affairs Medical Center 
(W.A.R.) — both in Nashville. Address 
reprint requests to Dr. Ray at the Depart-
ment of Preventive Medicine, Village at 
Vanderbilt, Suite 2600, 1501 21st Ave. S., 
Nashville, TN 37212, or cindy.naron@
vanderbilt.edu.

N Engl J Med 2012;366:1881-90.
Copyright © 2012 Massachusetts Medical Society.
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BACKGROUND
Although several macrolide antibiotics are proarrhythmic and associated with an in-
creased risk of sudden cardiac death, azithromycin is thought to have minimal car-
diotoxicity. However, published reports of arrhythmias suggest that azithromycin 
may increase the risk of cardiovascular death.

METHODS
We studied a Tennessee Medicaid cohort designed to detect an increased risk of death 
related to short-term cardiac effects of medication, excluding patients with serious 
noncardiovascular illness and person-time during and shortly after hospitaliza-
tion. The cohort included patients who took azithromycin (347,795 prescriptions), 
propensity-score–matched persons who took no antibiotics (1,391,180 control peri-
ods), and patients who took amoxicillin (1,348,672 prescriptions), ciprofloxacin 
(264,626 prescriptions), or levofloxacin (193,906 prescriptions).

RESULTS
During 5 days of therapy, patients taking azithromycin, as compared with those who 
took no antibiotics, had an increased risk of cardiovascular death (hazard ratio, 2.88; 
95% confidence interval [CI], 1.79 to 4.63; P<0.001) and death from any cause (haz-
ard ratio, 1.85; 95% CI, 1.25 to 2.75; P = 0.002). Patients who took amoxicillin had 
no increase in the risk of death during this period. Relative to amoxicillin, azithro-
mycin was associated with an increased risk of cardiovascular death (hazard ratio, 
2.49; 95% CI, 1.38 to 4.50; P = 0.002) and death from any cause (hazard ratio, 2.02; 
95% CI, 1.24 to 3.30; P = 0.005), with an estimated 47 additional cardiovascular deaths 
per 1 million courses; patients in the highest decile of risk for cardiovascular dis-
ease had an estimated 245 additional cardiovascular deaths per 1 million courses. 
The risk of cardiovascular death was significantly greater with azithromycin than 
with ciprofloxacin but did not differ significantly from that with levofloxacin.

CONCLUSIONS
During 5 days of azithromycin therapy, there was a small absolute increase in cardio-
vascular deaths, which was most pronounced among patients with a high baseline 
risk of cardiovascular disease. (Funded by the National Heart, Lung, and Blood Insti-
tute and the Agency for Healthcare Quality and Research Centers for Education and 
Research on Therapeutics.)

The New England Journal of Medicine 
Downloaded from nejm.org on January 6, 2016. For personal use only. No other uses without permission. 
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Association Between Blood Pressure Control and Risk
of Recurrent Intracerebral Hemorrhage
Alessandro Biffi, MD; Christopher D. Anderson, MD, MMSc; Thomas W. K. Battey, BS; Alison M. Ayres, BA;
Steven M. Greenberg, MD, PhD; Anand Viswanathan, MD, PhD; Jonathan Rosand, MD, MSc

IMPORTANCE Intracerebral hemorrhage (ICH) is the most severe form of stroke. Survivors are
at high risk of recurrence, death, and worsening functional disability.

OBJECTIVE To investigate the association between blood pressure (BP) after index ICH and
risk of recurrent ICH.

DESIGN, SETTING, AND PARTICIPANTS Single-site, tertiary care referral center observational
study of 1145 of 2197 consecutive patients with ICH presenting from July 1994 to December
2013. A total of 1145 patients with ICH survived at least 90 days and were followed up
through December 2013 (median follow-up of 36.8 months [minimum, 9.8 months]).

EXPOSURES Blood pressure measurements at 3, 6, 9, and 12 months, and every 6 months
thereafter, obtained from medical personnel (inpatient hospital or outpatient clinic medical or
nursing staff) or via patient self-report. Exposure was characterized in 3 ways: (1) recorded
systolic and diastolic measurements; (2) classification as adequate or inadequate BP control
based on American Heart Association/American Stroke Association recommendations; and
(3) stage of hypertension based on Joint National Committee on Prevention, Detection,
Evaluation, and Treatment of High Blood Pressure 7 criteria.

MAIN OUTCOMES AND MEASURES Recurrent ICH and its location within the brain
(lobar vs nonlobar).

RESULTS There were 102 recurrent ICH events among 505 survivors of lobar ICH and 44
recurrent ICH events among 640 survivors of nonlobar ICH. During follow-up adequate BP
control was achieved on at least 1 measurement by 625 patients (54.6% of total [range,
49.2%-58.7%]) and consistently (ie, at all available time points) by 495 patients (43.2% of
total [range, 34.5%-51.0%]). The event rate for lobar ICH was 84 per 1000 person-years
among patients with inadequate BP control compared with 49 per 1000 person-years among
patients with adequate BP control. For nonlobar ICH the event rate was 52 per 1000
person-years with inadequate BP control compared with 27 per 1000 person-years for
patients with adequate BP control. In analyses modeling BP control as a time-varying variable,
inadequate BP control was associated with higher risk of recurrence of both lobar ICH (hazard
ratio [HR], 3.53 [95% CI, 1.65-7.54]) and nonlobar ICH (HR, 4.23 [95% CI, 1.02-17.52]). Systolic
BP during follow-up was associated with increased risk of both lobar ICH recurrence (HR, 1.33
per 10-mm Hg increase [95% CI, 1.02-1.76]) and nonlobar ICH recurrence (HR, 1.54 [95% CI,
1.03-2.30]). Diastolic BP was associated with increased risk of nonlobar ICH recurrence
(HR, 1.21 per 10-mm Hg increase [95% CI, 1.01-1.47]) but not with lobar ICH recurrence
(HR, 1.36 [95% CI, 0.90-2.10]).

CONCLUSIONS AND RELEVANCE In this observational single-center cohort study of ICH
survivors, reported BP measurements suggesting inadequate BP control during follow-up
were associated with higher risk of both lobar and nonlobar ICH recurrence. These data
suggest that randomized clinical trials are needed to address the benefits and risks of stricter
BP control in ICH survivors.

JAMA. 2015;314(9):904-912. doi:10.1001/jama.2015.10082
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Candidate gene and genome-wide association studies (GWAS)  
have identified genetic variants that modulate risk for  
human disease; many of these associations require further 
study to replicate the results. Here we report the first  
large-scale application of the phenome-wide association  
study (PheWAS) paradigm within electronic medical records 
(EMRs), an unbiased approach to replication and discovery 
that interrogates relationships between targeted genotypes  
and multiple phenotypes. We scanned for associations  
between 3,144 single-nucleotide polymorphisms (previously 
implicated by GWAS as mediators of human traits) and  
1,358 EMR-derived phenotypes in 13,835 individuals of 
European ancestry. This PheWAS replicated 66% (51/77) of 
sufficiently powered prior GWAS associations and revealed  
63 potentially pleiotropic associations with P < 4.6 × 10−6 
(false discovery rate < 0.1); the strongest of these novel 
associations were replicated in an independent cohort  
(n = 7,406). These findings validate PheWAS as a tool to  
allow unbiased interrogation across multiple phenotypes  
in EMR-based cohorts and to enhance analysis of the  
genomic basis of human disease.

In recent years, GWAS have provided a powerful systematic method 
to investigate the impact of common genomic variations on human 
pathophysiology. Since 2005, more than 1,500 GWAS have identi-
fied genomic variants associated with nearly 250 diseases and traits1;  
a number of the associations had been identified previously by 
focused genetic studies. These are recorded in the National Human 
Genome Research Institute’s (NHGRI) web-accessible GWAS cata-
log (“NHGRI Catalog”)1 (Catalog of Published Genome-Wide 
Association Studies, http://www.genome.gov/26525384). The majority  
of GWAS investigate a single disease or trait; the accrual of such a 

large number of single variant–phenotype associations has led to the 
serendipitous identification of single loci associated with multiple 
diseases, or pleiotropy. Notable examples include variants at 9p21.3, 
which were associated initially with early myocardial infarction2 and 
subsequently with intracranial aneurysm and abdominal aortic aneu-
rysms3; variants in the human leukocyte antigen (HLA) region and 
IL23R, which were associated initially with inflammatory bowel dis-
ease4 and subsequently with a variety of other autoimmune diseases5,6; 
and PTPN22 R602W, which was associated initially with lower risk 
of Crohn’s disease and subsequently with a higher risk of rheuma-
toid arthritis and other autoimmune diseases7. A recent analysis  
of the NHGRI catalog noted pleiotropy in 17% of genes and 4.6% of 
single-nucleotide polymorphisms (SNPs) with reported phenotype 
associations in the catalog8.

An alternative and complementary approach to query genotype-
phenotype associations and to detect pleiotropy is the PheWAS. With 
PheWAS, associations between a specific genetic variant and a wide 
range of physiological and/or clinical outcomes and phenotypes can 
be explored either by using algorithms to parse EMR data9 or by 
analyzing data collected in observational cohort studies10. Previous 
small-scale EMR studies have provided initial support for the ability of 
the EMR-based PheWAS to replicate individual genotype-phenotype 
associations and to uncover novel associations11–13. However,  
whether EMR data or PheWAS methods can be used to discover 
genetic associations with a wide range of phenotypes has not been 
systematically studied.

Here, we expanded the PheWAS disease classifications to analyze 
the diverse spectrum of phenotypes in the NHGRI Catalog using 
EMR data and refined the statistical methods over previous pub-
lications9,11–13. We repurposed extant EMR and GWAS data from 
five institutions in the Electronic Medical Records and Genomics 
(eMERGE) Network14. We report the results of the largest PheWAS 
to date, involving 3,144 SNPs in the NHGRI Catalog. Our objectives 
were to validate PheWAS as a systematic method to detect pleiotropy 
by replicating known NHGRI Catalog results in EMR-derived data, 
to discover new associations for all available SNPs in the NHGRI 

Systematic comparison of phenome-wide association 
study of electronic medical record data and  
genome-wide association study data
Joshua C Denny1,2, Lisa Bastarache2, Marylyn D Ritchie3, Robert J Carroll2, Raquel Zink2, Jonathan D Mosley1, 
Julie R Field4, Jill M Pulley4,5, Andrea H Ramirez1, Erica Bowton4, Melissa A Basford4, David S Carrell6, 
Peggy L Peissig7, Abel N Kho8, Jennifer A Pacheco9, Luke V Rasmussen10, David R Crosslin11, Paul K Crane12, 
Jyotishman Pathak13, Suzette J Bielinski14, Sarah A Pendergrass3, Hua Xu15, Lucia A Hindorff16,  
Rongling Li16, Teri A Manolio16, Christopher G Chute13, Rex L Chisholm17, Eric B Larson6, Gail P Jarvik11,12, 
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Daniel R Masys22 & Dan M Roden1,23
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Challenges of EHR Analytics

•  �ô&íãXąŶŵı
Not	designed	for	
research/analyAcs		

•  íãƣƴ2�ă�ÄĄ�
ś��-ĵĹĶ…				
EHR	data:	Complex,	
Heterogeneous,	Incomplete,	
Discrepancy			

•  ĺŹ�º������
Require	experAse	in	
mulAple	disciplines	such	
as	medicine,	
biostaAsAcs,	
epidemiology,	and	
informaAcs		
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Take	Tylenol	

IÌ	Acquisi-on		
	
Storage	
	
Processing	
	
Integra-on	
	
Retrieval	
	
Display		

Descrip-ve:�űƔ�		
What	happened?	
•  Disease	categories	
•  Adverse	events	

Predic-ve:	(Ʋė)	
What	might	happen?	
•  High-risk	paAents	
•  GeneAc	risks	

Prescrip-ve:	�á9�	
What	should	we	do?	
•  Minimize	readmissions	
•  Personalized	therapeuAcs	

Biomedical	Discovery	
ĩġj ĻŁ		

Healthcare	Delivery	
jĭ£ò		

Health	Preven-on	
ĮįƲƤ	

ĺŹ	

÷Ò	

íã���IÌ���ĺŹ���÷Ò	



www.amia.org

����
� 
Biomedical Informatics 

Biomedical informatics (BMI) is the 
interdisciplinary field that studies 
and pursues the effective uses of 
biomedical data, information, and 
knowledge for scientific inquiry, 
problem solving, and decision 
making, motivated by efforts to 
improve human health. 



Biomedical Informatics in Perspective  
����
��

Basic Research

Applied Research
And Practice

Biomedical Informatics Methods, 
Techniques, and Theories

Imaging 
Informatics

Clinical 
InformaticsBioinformatics Public Health 

Informatics

Molecular and
Cellular

Processes
Tissues and

Organs
Individuals
(Patients)

Populations
And Society



�Iĩġj IÌ ı%»íãXąÙ” 
Biomedical informatics technologies used for EHR 
analytics
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EHR 
�CDR� 

HIS	

EMR	

Pharmacy	

Analytic 
Databases 

Common	Data	Model	

Applications 

Data	integra-on	 Data	analysis	

Ontologies	

Security	
	
……	

Natural	language	
processing	

Visual	analy-cs	

Sta-s-cal	methods	

Distributed	
compu-ng	

Machine	learning/
deep	learning	
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Cerner
•  ŝ�ú�ī�įoōŗE½�	

–  2017	ŭç�4$5.1	B	
– �²424�000	

•  ŭç:ýd&'	

•  HealthIntent·z�populaAon	health	management�	
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2017	Revenue	 $	 	%		

System	sales	 1,355,172,000	 26%	

Support	and	maintenance	 1,046,656,000	 21%	

Services	 2,638,981,000	 51%	

Reimbursed	travel	 101,463,000	 2%	

Total	 5,142,272,000	 100%	



•  Optumô5¦&ºēıjĭHK´�åEýdıQ}�
S$gß2�
– ƬŲĝƱı12į1	-	ƬŲčļæà�ęÌ�ƆĜ�/�
:£ĦSKÂĴćıęƅş�

– åEÛĨýdıĂĄ2ū¾�jƥ�jĩ�jĭ5"ş�
S6jĭHKĂĄ�µþ£ĦmĩōŗıĦ8h�¹æà
úCıį1ÛĨ�AƵ�

– &ÛĨ7ƅıĂĄ2ƪ'�HƧ�±ê¿�ŠƘê¿�´
êĂĄţ�È^ƶƃƝıÛĨ�üë ƶë�ƒůŉĨ�
.7�

– &ÛĨ[ðıĂĄ2ūnÔôĩ�Ŀ ĻŁĂĄ	-	ŧaI
ÃtùüëıÛĨñĒ�£Ħè�ÛĨýd�KÂŕĆı
Ù”�ūġ	



•  Optum\Īíã�Xą�ū×ÛĨýd�1wK
Â�jĭHKýd�jĭHKýdŅĤĢcţÃ
°�#"dƚƢı"d2�
– OptumHealth	�ĔIÛĨåE�ÛĨŉĨ�KÂ�ę
ƅşr�:sKÂƞŮýd;	

– OptumInsight	�ĔIíã�Xą:sS6jĭHKI
ÌÙ”ýd�¹åEƑŭýd�æà�

– OptumRx	åEū×ÛĨýd	
•  ĎQ}&�´Q}United	Health	Group	(Pħƀ§
500Æ?Zń6)	



•  ěÀ1ŞKÂXą	
•  Ʈ�Ō®į1Şıjĩ«�ýd	

– W10%ÊźıŷƣƝ	

•  Optum	ů&KÂýd	
– 340061vĲ	



•  "ĬƳNıKÂíãL�:	
–  1.82HƧŎƇíã�claims�	
–  85006%»íã�clinical	data�	

•  ¶f¤ÖƒůƲėXą�predicAve	analyAcs�	
–  13.86E½�FƭOptum	OneıƲėXą	
– ŝ�`25ıKÂñĊ�Health	plans�$20#ƛĪ
OptumıXąŕĆ	

–  30¦ĿĻ~BĂĄ�OptumLabs~B	



•  OptumRxƖƐSƉƐ67,000¦ƫ�ū¾��#ƕƂ
�Ƣ��"ū×:såE¦ÁƎĚýdıŜŖ�
�ŝ�ƉƐ650061åEPñ?ıū×ÛĨýd	

•  	OptumRxŘ~PƮıū×ÛĨýdñĒƩÓ*1
wŗŵ �j �£Ƶ�_ū�S6%»íã�
¹¬Xą½ĪIäe%»ÛĨĕ¨�:æàÛĨ
đĭ�~ŴË�ƖƐ�Æýd�åƶ%»ƃƝD
¤Ö�#1vĲ	

•  ď#Ó�ďû�(Per	Member	Per	Month)�ũķ11-16
ŝƞ	



IBM Watson Health

•  IBM	investment	on	healthcare	
– Truven	AnalyAcs		
– Explorys	

•  Watson	Health	Products	
– Social	Program	Management		
–  IBM	Watson	for	Care	Manager	
–  IBM	Watson	for	Drug	Discovery	
–  IBM	Watson	for	Oncology	
–  IMB	Watson	for	Genomics	
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Flatiron Health

•  šİ�íã�Ù”·z	
–  For	community	oncology	(OncoCloud	)	
–  For	life	sciences		
–  For	academics	and	hospitals		

•  ŮƆ�ŔŭÎU	
–  2013	,	$8M,	Google	Ventures	
–  2014,	$130M,	Google	Ventures	
–  2016,	$175M,	Roche	
–  2018,	$1.9B,	Acquired	by	Roche		

•  Ócp�	
– ƶƃƝíã�FDA�	
– šİjĩŜŖ	
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More Health

•  ƓŀjĭQ}�–	Telemedicine	
–  $ŝưŏ�¦Š~Ɠŀ=ź	
–  Ĥłń+źĭÏų	
–  ~ĒåEúNƒĢëū	
–  ƈŝjĭřŨƖƗ	

•  ŮƆ�ŔŭÎU	
–  2012,	ťŇ	
–  �015,	$3M,	New	Enterprise	Associates	
–  2018,	çæ·Ű	

•  Ócp�	
–  Ù”	
–  jĭƆĜ	
–  êņĒŴ	
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Pieces Technologies Inc. 

•  ?IƏÞïıjĭ1²÷ţQ}	
– Hospital	systems	and	health	plans	
–  Social	service	providers	
–  �01³{	

•  ŮƆ�ŔŭÎU	
–  2016,	$21.6M,	Jump	CapitalŅ6¦	
–  2018,	ªĐBƌ	

•  ĢŨ	
– “�jĭƆĜ	
– Ɵ©Ë/�	
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Gƒ$�%»jĭ�íãXą		
OHDSI$�4œ	



ÃéË%»íãŠĳ�� OHDSI

•  The	Observa-onal	Health	Data	Sciences	and	
Informa-cs	(OHDSI)	program	is	a	mulA-
stakeholder,	interdisciplinary	collaboraAve	to	
create	open-source	soluAons	that	bring	out	the	
value	of	observaAonal	health	data	through	large-
scale	analyAcs	

•  OHDSI	has	established	an	internaAonal	network	
of	researchers	and	observaAonal	health	
databases	with	a	central	coordinaAng	center	
housed	at	Columbia	University	

hZp://ohdsi.org	
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OMOPíãċ�Ŕo*�ČèŚ�Ħüğ“5.0  
The journey of the OMOP Common data model

OMOP	CDMv2	

OMOP	CDMv4	

OMOP	CDMv5	

OMOP	CDM	now	Version	5,	following	
mulAple	iteraAons	of	implementaAon,	
tesAng,	modificaAons,	and	expansion	
based	on	the	experiences	of	the	
community	who	bring	on	a	growing	
landscape	of	research	use	cases.	



OHDSIŜŖ 
OHDSI community in action

CoordinaAng	
center:	
CUMC	

Data	partner	

Researcher	

OHDSI	Collaborators:	
•  >140	researchers	in	academia,	industry,	government,	health	systems	
•  >20	countries	
•  MulA-disciplinary	experAse:	epidemiology,	staAsAcs,	medical	informaAcs,	

computer	science,	machine	learning,	clinical	sciences	
Databases	converted	to	OMOP	CDM	within	OHDSI	Community:	
•  >50	databases	
•  >660	million	paAents	Ask	clinical	

quesAon	
Design	
protocol	

Develop	
standardized	
analyAcs	

Generate		
and	

disseminate	
evidence	

Standardized	process	for	network	analyses:	



George Hripcsak et al. PNAS doi:10.1073/pnas.1510502113 

©2016 by National Academy of Sciences 

OHDSIĻŁ���ÑËįūġDĪƊÇ	
Characterizing	treatment	pathways	at	scale	
using	the	OHDSI	network	



OHDSI China
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2018	$ŝj IÌ�=�øOHDSI$�¸=�	
I�û29ó-7û1ó�º±xÃ�	
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ſſ� 
Thank you! 

	
For	quesAons,	please	contact:	

	
Hua.Xu@uth.tmc.edu	
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